The Class 11 Physics Syllabus is beneficial to students since it contains all of the required material that a student should be aware of before beginning their course studies. It is divided into 10 units with a total of 15 chapters that cover basic concepts including Laws of Motion, Gravity, Matter Properties, and Thermodynamics. Students in Class 11 who are preparing for the Physics exam should always stick to the CBSE syllabus and marking scheme as it is wellstructured, detailed, and easy to understand.
Let’s have a look at the latest CBSE class 11 Physics syllabus which can also be downloaded in pdf form.
No. of Periods 
Marks 

Unit–I 
Physical World and Measurement 
10 
23 
Chapter–1: Physical World 

Chapter–2: Units and Measurements 

UnitII 
Kinematics 
24 

Chapter–3: Motion in a Straight Line 

Chapter–4: Motion in a Plane 

Unit–III 
Laws of Motion 
14 

Chapter–5: Laws of Motion 

Unit–IV 
Work, Energy and Power 
12 
17 
Chapter–6: Work, Energy and Power 

Unit–V 
Motion of System of Particles and Rigid Body 
18 

Chapter–7: System of Particles and Rotational Motion 

UnitVI 
Gravitation 
12 

Chapter–8: Gravitation 

Unit–VII 
Properties of Bulk Matter 
24 
20 
Chapter–9: Mechanical Properties of Solids 

Chapter–10: Mechanical Properties of Fluids 

Chapter–11: Thermal Properties of Matter 

Unit–VIII 
Thermodynamics 
12 

Chapter–12: Thermodynamics 

Unit–IX 
Behaviour of Perfect Gases and Kinetic Theory of Gases 
08 

Chapter–13: Kinetic Theory 

Unit–X 
Oscillations and Waves 
26 
10 
Chapter–14: Oscillations 

Chapter–15: Waves 

Total 
160 
70 
Physicsscope and excitement; nature of physical laws; Physics, technology and society.
Need for measurement: Units of measurement; systems of units; SI units, fundamental and derived units. Length, mass and time measurements; accuracy and precision of measuring instruments; errors in measurement; significant figures. Dimensions of physical quantities, dimensional analysis and its applications.
Frame of reference, Motion in a straight line: Positiontime graph, speed and velocity.
Elementary concepts of differentiation and integration for describing motion, uniform and non uniform motion, average speed and instantaneous velocity, uniformly accelerated motion, velocity  time and positiontime graphs.
Relations for uniformly accelerated motion (graphical treatment).
Scalar and vector quantities; position and displacement vectors, general vectors and their notations; equality of vectors, multiplication of vectors by a real number; addition and subtraction of vectors, relative velocity, Unit vector; resolution of a vector in a plane, rectangular components, Scalar and Vector product of vectors.
Motion in a plane, cases of uniform velocity and uniform acceleration projectile motion, uniform circular motion.
Intuitive concept of force, Inertia, Newton's first law of motion; momentum and Newton's second law of motion; impulse; Newton's third law of motion.
Law of conservation of linear momentum and its applications. Equilibrium of concurrent forces, Static and kinetic friction, laws of friction, rolling friction, lubrication.
Dynamics of uniform circular motion: Centripetal force, examples of circular motion (vehicle on a level circular road, vehicle on a banked road).
Work done by a constant force and a variable force; kinetic energy, work energy theorem, power. Notion of potential energy, potential energy of a spring, conservative forces: conservation of mechanical energy (kinetic and potential energies); non conservative forces: motion in a vertical circle; elastic and inelastic collisions in one and two dimensions.
Centre of mass of a twoparticle system, momentum conservation and centre of mass motion. Centre of mass of a rigid body; centre of mass of a uniform rod. Moment of a force, torque, angular momentum, law of conservation of angular momentum and its applications.
Equilibrium of rigid bodies, rigid body rotation and equations of rotational motion, comparison of linear and rotational motions.
Moment of inertia, radius of gyration, values of moments of inertia for simple geometrical objects (no derivation). Statement of parallel and perpendicular axes theorems and their applications.
Kepler's laws of planetary motion, universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth.
Gravitational potential energy and gravitational potential, escape velocity, orbital velocity of a satellite, Geostationary satellites.
Elastic behaviour, Stressstrain relationship, Hooke's law, Young's modulus, bulk modulus, shear modulus of rigidity, Poisson's ratio; elastic energy.
Pressure due to a fluid column; Pascal's law and its applications (hydraulic lift and hydraulic brakes), effect of gravity on fluid pressure.
Viscosity, Stokes' law, terminal velocity, streamline and turbulent flow, critical velocity, Bernoulli's theorem and its applications.
Surface energy and surface tension, angle of contact, excess of pressure across a curved surface, application of surface tension ideas to drops, bubbles and capillary rise.
Heat, temperature, thermal expansion; thermal expansion of solids, liquids and gases, anomalous expansion of water; specific heat capacity; Cp, Cv  calorimetry; change of state  latent heat capacity.
Heat transferconduction, convection and radiation, thermal conductivity, qualitative ideas of Blackbody radiation, Wein's displacement Law, Stefan's law, Greenhouse effect.
Thermal equilibrium and definition of temperature (zeroth law of thermodynamics), heat, work and internal energy.
First law of thermodynamics, isothermal and adiabatic processes.
Second law of thermodynamics: reversible and irreversible processes, Heat engine and refrigerator.
Equation of state of a perfect gas, work done in compressing a gas.
Kinetic theory of gases  assumptions, concept of pressure. Kinetic interpretation of temperature; rms speed of gas molecules; degrees of freedom, law of equipartition of energy (statement only) and application to specific heat capacities of gases; concept of mean free path, Avogadro's number.
Periodic motion  time period, frequency, displacement as a function of time, periodic functions.
Simple harmonic motion (S.H.M) and its equation; phase; oscillations of a loaded spring restoring force and force constant; energy in S.H.M. Kinetic and potential energies; simple pendulum derivation of expression for its time period.
Free, forced and damped oscillations (qualitative ideas only), resonance.
Wave motion: Transverse and longitudinal waves, speed of travelling wave, displacement relation for a progressive wave, principle of superposition of waves, reflection of waves, standing waves in strings and organ pipes, fundamental mode and harmonics, Beats, Doppler effect.
The record, to be submitted by the students, at the time of their annual examination, has to include:
• Record of at least 12 Experiments [with 6 from each section], to be performed by the students.
• Record of at least 6 Activities [with 3 each from section A and section B], to be performed by the students.
• Report of the project to be carried out by the students.
Two experiments one from each section 
7+7 Marks 
Practical record (experiment and activities) 
5 Marks 
One activity from any section 
3 Marks 
Investigatory Project 
3 Marks 
Viva on experiments, activities and project 
5 Marks 
Total 
30 Marks 
its end (ii) in the middle.
1. Physics PartI, Textbook for Class XI, Published by NCERT
2. Physics PartII, Textbook for Class XI, Published by NCERT
3. Laboratory Manual of Physics, Class XI Published by NCERT
4. The list of other related books and manuals brought out by NCERT (consider multimedia also).
So, now you must have got a clear understanding of the CBSE Physics syllabus for Class 11. We hope that you find this detailed information on Physics syllabus useful for your studies and preparation of your class 11 exams.