Let AB and CD be two equal cords (i.e., AB = CD). In the above question, it is given that AB and CD intersect at a point, say, E.
It is now to be proven that the line segments AE = DE and CE = BE
Construction Steps
Step 1: From the centre of the circle, draw a perpendicular to AB, i.e., OM ⊥ AB.
Step 2: Similarly, draw ON ⊥ CD.
Step 3: Join OE.
Now, the diagram is as follows:
Proof:
From the diagram, it is seen that OM bisects AB, and so OM ⊥ AB
Similarly, ON bisects CD, and so ON ⊥ CD.
It is known that AB = CD. So,
AM = ND — (i)
and MB = CN — (ii)
Now, triangles ΔOME and ΔONE are similar by RHS congruency, since
∠OME = ∠ONE (They are perpendiculars.)
OE = OE (It is the common side.)
OM = ON (AB and CD are equal, and so they are equidistant from the centre.)
∴ ΔOME ≅ ΔONE
ME = EN (by CPCT) — (iii)
Now, from equations (i) and (ii), we get
AM+ME = ND+EN
So, AE = ED
Now from equations (ii) and (iii), we get
MB-ME = CN-EN
So, EB = CE (Hence, proved)